Machine learning-supported manufacturing: a review and directions for future research

Baris Ördek, Yuri Borgianni, Eric Coatanea

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

6 Sitaatiot (Scopus)
16 Lataukset (Pure)

Abstrakti

The evolution of manufacturing systems toward Industry 4.0 and 5.0 paradigms has pushed the diffusion of Machine Learning (ML) in this field. As the number of articles using ML to support manufacturing functions is expanding tremendously, the main objective of this review article is to provide a comprehensive and updated overview of these applications. 114 journal articles have been collected, analysed, and classified in terms of supervision approaches, function, ML algorithm, data inputs and outputs, and application domain. The findings show the fragmentation of the field and that most of the ML-based systems address limited objectives. Some inputs and outputs of the analysed support tools are shared across the reviewed contributions, and their possible combinations have been outlined. The advantages, limitations, and research opportunities of ML support in manufacturing are discussed. The paper outlines that the excessive specialization of the reviewed applications could be overcome by increasing the diffusion of transfer learning in the manufacturing domain.

AlkuperäiskieliEnglanti
Artikkeli2326526
JulkaisuProduction & Manufacturing Research
Vuosikerta12
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Machine learning-supported manufacturing: a review and directions for future research'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä