TY - JOUR
T1 - Measurement report
T2 - Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest
AU - Brasseur, Zoé
AU - Castarède, Dimitri
AU - Thomson, Erik S.
AU - Adams, Michael P.
AU - Drossaart Van Dusseldorp, Saskia
AU - Heikkilä, Paavo
AU - Korhonen, Kimmo
AU - Lampilahti, Janne
AU - Paramonov, Mikhail
AU - Schneider, Julia
AU - Vogel, Franziska
AU - Wu, Yusheng
AU - Abbatt, Jonathan P.D.
AU - Atanasova, Nina S.
AU - Bamford, Dennis H.
AU - Bertozzi, Barbara
AU - Boyer, Matthew
AU - Brus, David
AU - Daily, Martin I.
AU - Fösig, Romy
AU - Gute, Ellen
AU - Harrison, Alexander D.
AU - Hietala, Paula
AU - Höhler, Kristina
AU - Kanji, Zamin A.
AU - Keskinen, Jorma
AU - Lacher, Larissa
AU - Lampimäki, Markus
AU - Levula, Janne
AU - Manninen, Antti
AU - Nadolny, Jens
AU - Peltola, Maija
AU - Porter, Grace C.E.
AU - Poutanen, Pyry
AU - Proske, Ulrike
AU - Schorr, Tobias
AU - Silas Umo, Nsikanabasi
AU - Stenszky, János
AU - Virtanen, Annele
AU - Moisseev, Dmitri
AU - Kulmala, Markku
AU - Murray, Benjamin J.
AU - Petäjä, Tuukka
AU - Möhler, Ottmar
AU - Duplissy, Jonathan
N1 - Funding Information:
Financial support. This project received funding from the European Union’s Horizon 2020 research and innovation program under grand agreement nos. 654109 and 739530 and TransNational Access via ACTRIS-2 HyICE-2018 TNA project. The work of the University of Helsinki was supported by the Academy of Finland Centre of Excellence in Atmospheric Science (grant no. 307331) and NANOBIOMASS (307537), ACTRIS-Finland (328616), ACTRISCF (329274) and Arctic Community Resilience to Boreal Environmental change: Assessing risks from fire and disease (ACRoBEAR, 334792) Belmont Forum project. In addition, the work of the University of Helsinki was financially supported by the European Commission through ACTRIS2 (654109) and ACTRIS-IMP (871115) and ACTRIS2 TransNational Access and through integrative and Comprehensive Understanding on Polar Environments (iCUPE, 689443), ERA-NET-Cofund and by the University of Helsinki (ACTRIS-HY). The work of the KIT Institute for Meteorology and Climate Research (IMK-AAF) was supported through the Research Program “Atmosphere and Climate (ATMO)” of the Helmholtz Association and by the KIT Technology Transfer Project PINE (N059). EST and DC have been supported by the Swedish Research Councils, VR (2013-05153, 2020-03497) and FORMAS (2017-00564), and the Swedish Strategic Research Area MERGE. BJM and MPA acknowledge the European Research Council, ERC, MarineIce 648661, for funding. PH and JK acknowledge the funding from the Arctic Academy program “ARKTIKO” of the Academy of Finland under grant no. 286558, and PH acknowledges support from the Maj and Tor Nessling Foundation. NSU acknowledges the support of the Alexander von Humboldt Foundation, Germany (1188375). MP, SDvD and ZAK acknowledge the funding from the European Union’s Horizon 2020 research and innovation program (under the Marie Skłodowska-Curie grant agreement no. 751470, “ATM-METFIN” and grant agreement no. 654109) and the European Union Seventh Framework Programme (FP7/2007–2013; grant agreement no. 262254). EG and JPDA acknowledge the support from the NSERC (grant no. RGPIN-2017-05972), and EG acknowledges support from the University of Toronto Centre for Global Change Science Graduate Student Research Award. NSA and DHB acknowledge the funding from the Academy of Finland under the Postdoctoral Researcher Grant 309570 to NSA.
Funding Information:
The authors would like to gratefully acknowledge Janne Levula, Matti Loponen, Heikki Laakso, Turo Salminen and the rest of the technical staff of the Hyyti l Forestry Field Station for their expertise, hard work and willingness to help throughout the HyICE-2018 campaign. Erkki J rvinen and the pilots at Air Spark Oy are acknowledged for operating the research airplane. Simo Hakala is acknowledged for his help with the new particle formation event classification. Hanna Danielsson is acknowledged for her significant help with creating Fig. 1. This project received funding from the European Union s Horizon 2020 research and innovation program under grand agreement nos. 654109 and 739530 and TransNational Access via ACTRIS-2 HyICE-2018 TNA project. The work of the University of Helsinki was supported by the Academy of Finland Centre of Excellence in Atmospheric Science (grant no. 307331) and NANOBIOMASS (307537), ACTRIS-Finland (328616), ACTRISCF (329274) and Arctic Community Resilience to Boreal Environmental change: Assessing risks from fire and disease (ACRoBEAR, 334792) Belmont Forum project. In addition, the work of the University of Helsinki was financially supported by the European Commission through ACTRIS2 (654109) and ACTRIS-IMP (871115) and ACTRIS2 TransNational Access and through integrative and Comprehensive Understanding on Polar Environments (iCUPE, 689443), ERA-NET-Cofund and by the University of Helsinki (ACTRIS-HY). The work of the KIT Institute for Meteorology and Climate Research (IMK-AAF) was supported through the Research Program "Atmosphere and Climate (ATMO)" of the Helmholtz Association and by the KIT Technology Transfer Project PINE (N059). EST and DC have been supported by the Swedish Research Councils, VR (2013-05153, 2020-03497) and FORMAS (2017-00564), and the Swedish Strategic Research Area MERGE. BJM and MPA acknowledge the European Research Council, ERC, MarineIce 648661, for funding. PH and JK acknowledge the funding from the Arctic Academy program "ARKTIKO" of the Academy of Finland under grant no. 286558, and PH acknowledges support from the Maj and Tor Nessling Foundation. NSU acknowledges the support of the Alexander von Humboldt Foundation, Germany (1188375). MP, SDvD and ZAK acknowledge the funding from the European Union s Horizon 2020 research and innovation program (under the Marie Sk?odowska-Curie grant agreement no. 751470, "ATM-METFIN" and grant agreement no. 654109) and the European Union Seventh Framework Programme (FP7/2007 2013; grant agreement no. 262254). EG and JPDA acknowledge the support from the NSERC (grant no. RGPIN-2017-05972), and EG acknowledges support from the University of Toronto Centre for Global Change Science Graduate Student Research Award. NSA and DHB acknowledge the funding from the Academy of Finland under the Postdoctoral Researcher Grant 309570 to NSA.
Funding Information:
Open-access funding was provided by the Helsinki University Library.
Publisher Copyright:
© 2022 Zoé Brasseur et al.
PY - 2022/4/19
Y1 - 2022/4/19
N2 - The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiälä, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (μL-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.
AB - The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiälä, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (μL-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.
U2 - 10.5194/acp-22-5117-2022
DO - 10.5194/acp-22-5117-2022
M3 - Article
AN - SCOPUS:85129160383
SN - 1680-7316
VL - 22
SP - 5117
EP - 5145
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 8
ER -