Micro-computed tomography shows silent bubbles in squeaky mozzarella

    Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

    2 Sitaatiot (Scopus)
    14 Lataukset (Pure)

    Abstrakti

    The sound of food is of influence on how its flavour is perceived. Although rarely studied in psychoacoustics, cheese may have a resonating internal structure in the audible spectrum. It has been speculated that this structure or small bubbles that are formed as a result of fermentation are responsible for creating audible acoustic responses. The purpose of this study was to design a mechanical methodology to create audible acoustics from cheese samples and to quantify bubble presence in a sample. One hundred and two samples of mozzarella cheese with 1.5±0.4-cm3 volumes were subjected to shear from a wetted steel blade, whilst orthogonal force, blade acceleration, and acoustic response were continuously monitored. In addition, micro-computed tomography was performed. It was found that under our measurement conditions, mozzarella was forced to squeak in 10% of the experiments, at fundamental squeak frequencies up to 2 kHz, which indicates that the acoustics come from a resonating porous structure, rather than from resonating bubbles. The micro-computed tomography showed a bubble density of 51 cm−3 . This low bubble density may account for the absence of a high-frequency component in the spectra analysed. Our results confirm the presence of small bubbles in squeaky mozzarella, but these generate frequencies much higher than those recorded.
    AlkuperäiskieliEnglanti
    Sivut5-8
    JulkaisuCurrent Directions in Biomedical Engineering
    Vuosikerta9
    Numero1
    DOI - pysyväislinkit
    TilaJulkaistu - 20 syysk. 2023
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Micro-computed tomography shows silent bubbles in squeaky mozzarella'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
    • Röntgenmikrotomografia

      Hyttinen, J. (Manager)

      Laitteistot/tilat: Facility

    Siteeraa tätä