MSDA: Monocular Self-supervised Domain Adaptation for 6D Object Pose Estimation

Dingding Cai, Janne Heikkilä, Esa Rahtu

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

3 Lataukset (Pure)

Abstrakti

Acquiring labeled 6D poses from real images is an expensive and time-consuming task. Though massive amounts of synthetic RGB images are easy to obtain, the models trained on them suffer from noticeable performance degradation due to the synthetic-to-real domain gap. To mitigate this degradation, we propose a practical self-supervised domain adaptation approach that takes advantage of real RGB(-D) data without needing real pose labels. We first pre-train the model with synthetic RGB images and then utilize real RGB(-D) images to fine-tune the pre-trained model. The fine-tuning process is self-supervised by the RGB-based pose-aware consistency and the depth-guided object distance pseudo-label, which does not require the time-consuming online differentiable rendering. We build our domain adaptation method based on the recent pose estimator SC6D and evaluate it on the YCB-Video dataset. We experimentally demonstrate that our method achieves comparable performance against its fully-supervised counterpart while outperforming existing state-of-the-art approaches.
AlkuperäiskieliEnglanti
OtsikkoImage Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedings
ToimittajatRikke Gade, Michael Felsberg, Joni-Kristian Kämäräinen
KustantajaSpringer
Sivut467-481
Sivumäärä15
ISBN (elektroninen)9783031314384
ISBN (painettu)9783031314377
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaScandinavian Conference on Image Analysis - Lapland, Suomi
Kesto: 18 huhtik. 202321 huhtik. 2023

Julkaisusarja

NimiLecture Notes in Computer Science
Vuosikerta13886 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceScandinavian Conference on Image Analysis
Maa/AlueSuomi
KaupunkiLapland
Ajanjakso18/04/2321/04/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'MSDA: Monocular Self-supervised Domain Adaptation for 6D Object Pose Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä