Multi-Receiver Ensemble Machine-Learning Techniques for GNSS Spoofing Detection with Generalisability Approach

Yelyzaveta Pervysheva, Jani Käppi, Jari Syrjärinne, Jari Nurmi, Elena Simona Lohan

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)
3 Lataukset (Pure)

Abstrakti

Global Navigation Satellite System (GNSS) spoofing incidents are on the rise. Accurate spoofing detection methods are crucial for maintaining the system integrity, especially since spoofing events may occur unexpectedly and may impact different receivers in varying ways. In this study, we present a novel approach to GNSS spoofing detection utilizing ensemble-learning techniques with data obtained from multiple receivers at Jammertest event from Norway, in 2023. Leveraging the Jammertest dataset, which has been underutilized in non-time series analyses, we conducted several experiments to extract the relevant features and develop an effective spoofing detection model using seven receivers. Our results demonstrate a promising accuracy, with performance reaching approximately 98% detection accuracy.
AlkuperäiskieliEnglanti
Otsikko2024 32nd Telecommunications Forum, TELFOR 2024 - Proceedings
KustantajaIEEE
Sivumäärä4
ISBN (elektroninen)979-8-3503-9106-0
ISBN (painettu)979-8-3503-9107-7
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaTelecommunications Forum - Belgrade, Serbia
Kesto: 26 marrask. 202427 marrask. 2024

Julkaisusarja

NimiTelecommunications Forum
ISSN (painettu)2994-581X
ISSN (elektroninen)2994-5828

Conference

ConferenceTelecommunications Forum
Maa/AlueSerbia
KaupunkiBelgrade
Ajanjakso26/11/2427/11/24

Julkaisufoorumi-taso

  • Jufo-taso 0

Sormenjälki

Sukella tutkimusaiheisiin 'Multi-Receiver Ensemble Machine-Learning Techniques for GNSS Spoofing Detection with Generalisability Approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä