Multi-view predictive latent space learning

Jirui Yuan, Ke Gao, Pengfei Zhu, Karen Egiazarian

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    1 Sitaatiot (Scopus)

    Abstrakti

    In unsupervised circumstances, multi-view learning seeks a shared latent representation by taking the consensus and complementary principles into account. However, most existing multi-view unsupervised learning approaches do not explicitly lay stress on the predictability of the latent space. In this paper, we propose a novel multi-view predictive latent space learning (MVP) model and apply it to multi-view clustering and unsupervised dimension reduction. The latent space is forced to be predictive by maximizing the correlation between the latent space and feature space of each view. By learning a multi-view graph with adaptive view-weight learning, MVP effectively combines the complementary information from multi-view data. Experimental results on benchmark datasets show that MVP outperforms the state-of-the-art multi-view clustering and unsupervised dimension reduction algorithms.

    AlkuperäiskieliEnglanti
    JulkaisuPattern Recognition Letters
    Varhainen verkossa julkaisun päivämäärä2018
    DOI - pysyväislinkit
    TilaJulkaistu - 2018
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 2

    !!ASJC Scopus subject areas

    • Software
    • Signal Processing
    • Computer Vision and Pattern Recognition
    • Artificial Intelligence

    Sormenjälki

    Sukella tutkimusaiheisiin 'Multi-view predictive latent space learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä