MuSHRoom: Multi-Sensor Hybrid Room Dataset for Joint 3D Reconstruction and Novel View Synthesis

Xuqian Ren, Wenjia Wang, Dingding Cai, Tuuli Tuominen, Juho Kannala, Esa Rahtu

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Sitaatiot (Scopus)
3 Lataukset (Pure)

Abstrakti

Metaverse technologies demand accurate, real-time, and immersive modeling on consumer-grade hardware for both non-human perception (e.g., drone/robot/autonomous car navigation) and immersive technologies like AR/VR, requiring both structural accuracy and photorealism. However, there exists a knowledge gap in how to apply geometric reconstruction and photorealism modeling (novel view synthesis) in a unified framework. To address this gap and promote the development of robust and immersive modeling and rendering with consumer-grade devices, first, we propose a real-world Multi-Sensor Hybrid Room Dataset (MuSHRoom). Our dataset presents exciting challenges and requires state-of-the-art methods to be cost-effective, robust to noisy data and devices, and can jointly learn 3D reconstruction and novel view synthesis, instead of treating them as separate tasks, making them ideal for real-world applications. Second, we benchmark several famous pipelines on our dataset for joint 3D mesh reconstruction and novel view synthesis. Finally, in order to further improve the overall performance, we propose a new method that achieves a good trade-off between the two tasks. Our dataset and benchmark show great potential in promoting the improvements for fusing 3D reconstruction and high-quality rendering in a robust and computationally efficient end-to-end fashion.
AlkuperäiskieliEnglanti
Otsikko2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
AlaotsikkoProceedings
KustantajaIEEE
Sivut4496-4505
ISBN (elektroninen)9798350318920
DOI - pysyväislinkit
TilaJulkaistu - 3 tammik. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/CVF Winter Conference on Applications of Computer Vision - Waikoloa, Yhdysvallat
Kesto: 3 tammik. 20238 tammik. 2023

Julkaisusarja

NimiIEEE Winter Conference on Applications of Computer Vision
ISSN (painettu)2642-9381

Conference

ConferenceIEEE/CVF Winter Conference on Applications of Computer Vision
Maa/AlueYhdysvallat
KaupunkiWaikoloa
Ajanjakso3/01/238/01/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'MuSHRoom: Multi-Sensor Hybrid Room Dataset for Joint 3D Reconstruction and Novel View Synthesis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä