Named Entity Recognition and Relation Detection for Biomedical Information Extraction

Nadeesha Perera, Matthias Dehmer, Frank Emmert-Streib

Tutkimustuotos: Katsausartikkelivertaisarvioitu

97 Sitaatiot (Scopus)
83 Lataukset (Pure)

Abstrakti

The number of scientific publications in the literature is steadily growing, containing our knowledge in the biomedical, health, and clinical sciences. Since there is currently no automatic archiving of the obtained results, much of this information remains buried in textual details not readily available for further usage or analysis. For this reason, natural language processing (NLP) and text mining methods are used for information extraction from such publications. In this paper, we review practices for Named Entity Recognition (NER) and Relation Detection (RD), allowing, e.g., to identify interactions between proteins and drugs or genes and diseases. This information can be integrated into networks to summarize large-scale details on a particular biomedical or clinical problem, which is then amenable for easy data management and further analysis. Furthermore, we survey novel deep learning methods that have recently been introduced for such tasks.

AlkuperäiskieliEnglanti
Artikkeli673
Sivumäärä26
JulkaisuFrontiers in cell and developmental biology
Vuosikerta8
DOI - pysyväislinkit
TilaJulkaistu - 28 elok. 2020
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology

Sormenjälki

Sukella tutkimusaiheisiin 'Named Entity Recognition and Relation Detection for Biomedical Information Extraction'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä