Necessary and sufficient conditions for the existence of solution of generalized fuzzy relation equations A ⇔X = B

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

10 Sitaatiot (Scopus)

Abstrakti

In 2013 Li and Jin studied a particular type of fuzzy relational equations on finite sets, where the introduced min-bi-implication composition is based on Łukasiewicz equivalence. In this paper such fuzzy relation equations are studied on a more general level, namely complete residuated lattice valued fuzzy relation equations of type ⋀y∈Y(A(x,y)↔X(y)=B(x) are analyzed, and the existence of solutions S is studied. First a necessary condition for the existence of solution is established, then conditions for lower and upper limits of solutions are given, and finally sufficient conditions for the existence of the smallest and largest solutions, respectively, are characterized. If such general or global solutions do not exist, there might still be partial or point wise solutions: this is a novel way to study fuzzy relation equations. Such point wise solutions are studied on Łukasiewicz, Product and Gödel t-norm based residuated lattices on the real unit interval.

AlkuperäiskieliEnglanti
Sivut351-357
Sivumäärä7
JulkaisuInformation Sciences
Vuosikerta536
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Tutkimusalat

  • Fuzzy relation equation
  • Residuated lattice
  • T-norm

Julkaisufoorumi-taso

  • Jufo-taso 2

Sormenjälki

Sukella tutkimusaiheisiin 'Necessary and sufficient conditions for the existence of solution of generalized fuzzy relation equations A ⇔X = B'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä