Network Analysis of Microarray Data

Alisa Pavel, Angela Serra, Luca Cattelani, Antonio Federico, Dario Greco

    Tutkimustuotos: LukuScientificvertaisarvioitu

    7 Sitaatiot (Scopus)
    6 Lataukset (Pure)

    Abstrakti

    DNA microarrays are widely used to investigate gene expression. Even though the classical analysis of microarray data is based on the study of differentially expressed genes, it is well known that genes do not act individually. Network analysis can be applied to study association patterns of the genes in a biological system. Moreover, it finds wide application in differential coexpression analysis between different systems. Network based coexpression studies have for example been used in (complex) disease gene prioritization, disease subtyping, and patient stratification. In this chapter we provide an overview of the methods and tools used to create networks from microarray data and describe multiple methods on how to analyze a single network or a group of networks. The described methods range from topological metrics, functional group identification to data integration strategies, topological pathway analysis as well as graphical models.

    AlkuperäiskieliEnglanti
    OtsikkoMicroarray Data Analysis
    ToimittajatGiuseppe Agapito
    KustantajaHumana Press
    Sivut161-186
    Sivumäärä26
    ISBN (elektroninen)978-1-0716-1839-4
    ISBN (painettu)978-1-0716-1841-7
    DOI - pysyväislinkit
    TilaJulkaistu - 2022
    OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

    Julkaisusarja

    NimiMethods in Molecular Biology
    Vuosikerta2401
    ISSN (painettu)1064-3745
    ISSN (elektroninen)1940-6029

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Molecular Biology
    • Genetics

    Sormenjälki

    Sukella tutkimusaiheisiin 'Network Analysis of Microarray Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä