Abstrakti
In this paper, we propose an information-theoretic approach to discriminate graph classes structurally. For this, we use a measure for determining the structural information content of graphs. This complexity measure is based on a special information functional that quantifies certain structural information of a graph. To demonstrate that the complexity measure captures structural information meaningfully, we interpret some numerical results.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proc. - 2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008 |
Sivut | 77-84 |
Sivumäärä | 8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2008 |
Julkaistu ulkoisesti | Kyllä |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | 2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008 - Targu Mures, Mures, Suomi Kesto: 8 marrask. 2008 → 10 marrask. 2008 |
Conference
Conference | 2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008 |
---|---|
Maa/Alue | Suomi |
Kaupunki | Targu Mures, Mures |
Ajanjakso | 8/11/08 → 10/11/08 |
!!ASJC Scopus subject areas
- Artificial Intelligence
- Computer Science Applications
- Biomedical Engineering