Network classes and graph complexity measures

Matthias Dehmer, Stephan Borgert, Frank Emmert-Streib

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

In this paper, we propose an information-theoretic approach to discriminate graph classes structurally. For this, we use a measure for determining the structural information content of graphs. This complexity measure is based on a special information functional that quantifies certain structural information of a graph. To demonstrate that the complexity measure captures structural information meaningfully, we interpret some numerical results.

AlkuperäiskieliEnglanti
OtsikkoProc. - 2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008
Sivut77-84
Sivumäärä8
DOI - pysyväislinkit
TilaJulkaistu - 2008
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008 - Targu Mures, Mures, Suomi
Kesto: 8 marrask. 200810 marrask. 2008

Conference

Conference2008 1st International Conference on Complexity and Intelligence of the Artificial and Natural Complex Systems. Medical Applications of the Complex Systems. Biomedical Computing, CANS 2008
Maa/AlueSuomi
KaupunkiTargu Mures, Mures
Ajanjakso8/11/0810/11/08

!!ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Biomedical Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Network classes and graph complexity measures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä