Neural Network Fingerprinting and GNSS Data Fusion for Improved Localization in 5G

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

8 Lataukset (Pure)

Abstrakti

In modern radio networks with large antenna arrays and precise beamforming techniques, accurate user positioning plays a key role in enabling seamless mobility management, link optimization, navigation and safety control. In open and rural areas, Global Navigation Satellite Systems (GNSS) are able to provide high-accuracy and high-reliability positioning performance. However, in urban and densely built-up areas the GNSS performance is typically substantially degraded due to rich scattering and multipath propagation effects. In this paper, we propose a machine learning based solution to boost positioning accuracy in urban areas by (i) obtaining User Equipment (UE) position from beamformed Radio Signal Strength (RSS) measurements and (ii) coherently fusing it with GNSS-based positioning data to enhance overall positioning performance. Based on the obtained numerical results, we were able to achieve a meter-level accuracy with the proposed machine learning model utilizing the beamformed RSS measurements, and subsequently improve the positioning accuracy further via fusion with GNSS data.

AlkuperäiskieliEnglanti
Otsikko2021 International Conference on Localization and GNSS, ICL-GNSS 2021 - Proceedings
ToimittajatJari Nurmi, Elena-Simona Lohan, Joaquin Torres-Sospedra, Heidi Kuusniemi, Aleksandr Ometov
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)9781728196442
ISBN (painettu)9781728196459
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Localization and GNSS - Tampere, Suomi
Kesto: 1 kesäk. 20213 kesäk. 2021

Julkaisusarja

NimiInternational Conference on Localization and GNSS
ISSN (painettu)2325-0747
ISSN (elektroninen)2325-0771

Conference

ConferenceInternational Conference on Localization and GNSS
Maa/AlueSuomi
KaupunkiTampere
Ajanjakso1/06/213/06/21

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Networks and Communications
  • Aerospace Engineering
  • Control and Optimization

Sormenjälki

Sukella tutkimusaiheisiin 'Neural Network Fingerprinting and GNSS Data Fusion for Improved Localization in 5G'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä