Newton Method-Based Subspace Support Vector Data Description

F. Sohrab, F. Laakom, M. Gabbouj

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

5 Sitaatiot (Scopus)
1 Lataukset (Pure)

Abstrakti

In this paper, we present an adaptation of Newton's method for the optimization of Subspace Support Vector Data Description (S-SVDD). The objective of S-SVDD is to map the original data to a subspace optimized for one-class classification, and the iterative optimization process of data mapping and description in S-SVDD relies on gradient descent. However, gradient descent only utilizes first-order information, which may lead to suboptimal results. To address this limitation, we leverage Newton's method to enhance data mapping and data description for an improved optimization of subspace learning-based one-class classification. By incorporating this auxiliary information, Newton's method offers a more efficient strategy for subspace learning in one-class classification as compared to gradient-based optimization. The paper discusses the limitations of gradient descent and the advantages of using Newton's method in subspace learning for one-class classification tasks. We provide both linear and nonlinear formulations of Newton's method-based optimization for S-SVDD. In our experiments, we explored both the minimization and maximization strategies of the objective. The results demonstrate that the proposed optimization strategy outperforms the gradient-based S-SVDD in most cases.
AlkuperäiskieliEnglanti
Otsikko2023 IEEE Symposium Series on Computational Intelligence (SSCI)
KustantajaIEEE
Sivut1372-1379
Sivumäärä8
ISBN (elektroninen)978-1-6654-3065-4
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making - Mexico City, Meksiko
Kesto: 5 jouluk. 20238 jouluk. 2023

Julkaisusarja

Nimi IEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making
ISSN (elektroninen)2472-8322

Conference

ConferenceIEEE Symposium on Computational Intelligence in Multi-Criteria Decision Making
Maa/AlueMeksiko
KaupunkiMexico City
Ajanjakso5/12/238/12/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Newton Method-Based Subspace Support Vector Data Description'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä