NLOS Building Layout and Target Estimation in an L-Shaped Corner with Complex Geometries

Shucheng Xue, Jiahui Chen, Shisheng Guo, Mikko Valkama, Zhihao Zhu, Zihan Xu, Peilun Wu, Guolong Cui

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

13 Lataukset (Pure)

Abstrakti

Non-line-of-sight (NLOS) detection endows radar with the capability to sense visually obscured targets. However, existing algorithms rely on prior knowledge of the scene and assume that the layout is simple and regular, which restricts their applicability in practice. To address the above problems, this paper proposes a method for target localization and building layout reconstruction in L-shaped corner with complex geometries. Specifically, the time of arrivals (ToAs) of multipaths, containing information about NLOS target and scenario, are extracted using the data preprocessing method. Next, the nearest-neighbor (NN) algorithm is utilized to track and correlate the extracted ToAs. Then, based on the least squares (LS) method, the ToAs corresponding to diffraction, first-order reflection and second-order reflection paths are identified or complemented. Among them, the first two serve for the target localization, while the ToAs of second-order reflection are applied to accomplish the building layout reconstruction. Eventually, simulations and experiments are carried out to corroborate that the proposed algorithm can effectively locate the NLOS target and reconstruct a portion of the shape of wall just with a portable single-input single-output (SISO) radar.

AlkuperäiskieliEnglanti
JulkaisuIEEE Transactions on Instrumentation and Measurement
Vuosikerta74
Varhainen verkossa julkaisun päivämäärä25 jouluk. 2024
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'NLOS Building Layout and Target Estimation in an L-Shaped Corner with Complex Geometries'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä