Nonlinear time series prediction based on a power-law noise model

Frank Emmert-Streib, Matthias Dehmer

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.

AlkuperäiskieliEnglanti
Sivut1839-1852
Sivumäärä14
JulkaisuInternational Journal of Modern Physics C
Vuosikerta18
Numero12
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2007
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

!!ASJC Scopus subject areas

  • Computer Science Applications
  • Computational Theory and Mathematics
  • Yleinen fysiikka ja tähtitiede
  • Statistical and Nonlinear Physics
  • Mathematical Physics

Sormenjälki

Sukella tutkimusaiheisiin 'Nonlinear time series prediction based on a power-law noise model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä