Object detection and tracking

Kateryna Chumachenko, Moncef Gabbouj, Alexandros Iosifidis

Tutkimustuotos: LukuScientificvertaisarvioitu

Abstrakti

The availability of an increasing amount of computational power and large-scale public data sets has driven the field of object detection and tracking with an unprecedented development speed, finding applications in many areas. This chapter surveys the most prominent methods in the field. We first formulate the problems of object detection and single and multiple object tracking, and then present the most relevant methodologies which have successfully been developed to solve these problems. The chapter includes a comprehensive treatment of two-stage, one-stage and anchor-free object detection methods. Both single object and multiple object tracking methods are reviewed in the chapter. The former includes methods based on correlation filters and deep learning, including similarity learning, whereas the latter present online and offline multiple object tracking techniques. Online methods, including deep features driven and detection-based methods, rely on visual representations, while offline methods are mostly based on graph optimization.

AlkuperäiskieliEnglanti
OtsikkoDeep Learning for Robot Perception and Cognition
ToimittajatAlexandros Iosifidis, Anastasios Tefas
KustantajaAcademic Press
Sivut243-278
Sivumäärä36
ISBN (elektroninen)9780323857871
ISBN (painettu)9780323885720
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Computer Science(all)

Sormenjälki

Sukella tutkimusaiheisiin 'Object detection and tracking'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä