On the Sum of Fisher-Snedecor F Variates and its Application to Maximal-Ratio Combining

Osamah S. Badarneh, Daniel B. da Costa, Paschalis C. Sofotasios, Sami Muhaidat, Simon L. Cotton

    Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

    60 Sitaatiot (Scopus)

    Abstrakti

    Capitalizing on the recently proposed Fisher-Snedecor F composite fading model, in this letter, we investigate the sum of independent but not identically distributed (i.n.i.d.) Fisher-Snedecor F variates. First, a novel closed-form expression is derived for the moment generating function of the instantaneous signal-to-noise ratio. Based on this, the corresponding probability density function and cumulative distribution function of the sum of i.n.i.d. Fisher-Snedecor F variates are derived, which are subsequently employed in the analysis of multiple branch maximal-ratio combining (MRC). Specifically, we investigate the impact of multipath and shadowed fading on the outage probability and outage capacity of MRC based receivers. In addition, we derive exact closed-form expressions for the average bit error rate of coherent binary modulation schemes followed by an asymptotic analysis which provides further insights into the effect of the system parameters on the overall performance. Importantly, it is shown that the effect of multipath fading on the system performance is more pronounced than that of shadowing.

    AlkuperäiskieliEnglanti
    Sivut966-969
    JulkaisuIEEE Wireless Communications Letters
    Vuosikerta7
    Numero6
    Varhainen verkossa julkaisun päivämäärä14 toukok. 2018
    DOI - pysyväislinkit
    TilaJulkaistu - jouluk. 2018
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Control and Systems Engineering
    • Electrical and Electronic Engineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'On the Sum of Fisher-Snedecor F Variates and its Application to Maximal-Ratio Combining'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä