Abstrakti
Natural images may contain regions with different levels of blur affecting image visual quality. No-reference image visual quality metrics should be able to effectively evaluate both blur and sharpness levels on a given image. In this paper, we propose a large image database BlurSet to verify this ability. BlurSet contains 5000 grayscale images of size 128×128 pixels with different levels of Gaussian blur and unsharp mask. For each image, a scalar value indicating the level of blur and the level of sharpness is provided. Several image quality assessment criteria are presented to evaluate how a given metric can estimate the level of blur/sharpness on BlurSet. An extensive comparative analysis of different no-reference metrics is carried out. Reachable levels of the quality criteria are evaluated using the proposed blur/sharpness convolutional neural network (BSCNN).
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP) |
Sivumäärä | 6 |
ISBN (elektroninen) | 978-1-7281-9320-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 syysk. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Multimedia Signal Processing - Tampere, Suomi Kesto: 21 syysk. 2020 → 24 syysk. 2020 https://attend.ieee.org/mmsp-2020/ |
Julkaisusarja
Nimi | IEEE International Workshop on Multimedia Signal Processing |
---|---|
ISSN (elektroninen) | 2473-3628 |
Conference
Conference | IEEE International Workshop on Multimedia Signal Processing |
---|---|
Maa/Alue | Suomi |
Kaupunki | Tampere |
Ajanjakso | 21/09/20 → 24/09/20 |
www-osoite |
Julkaisufoorumi-taso
- Jufo-taso 1