Online Spectrogram Inversion for Low-Latency Audio Source Separation

Paul Magron, Tuomas Virtanen

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

3 Sitaatiot (Scopus)


Audio source separation is usually achieved by estimating the short-time Fourier transform (STFT) magnitude of each source, and then applying a spectrogram inversion algorithm to retrieve time-domain signals. In particular, the multiple input spectrogram inversion (MISI) algorithm has been exploited successfully in several recent works. However, this algorithm suffers from two drawbacks, which we address in this letter. First, it has originally been introduced in a heuristic fashion: we propose here a rigorous optimization framework in which MISI is derived, thus proving the convergence of this algorithm. Besides, while MISI operates offline, we propose here an online version of MISI called oMISI, which is suitable for low-latency source separation, an important requirement for e.g., hearing aids applications. oMISI also allows one to use alternative phase initialization schemes exploiting the temporal structure of audio signals. Experiments conducted on a speech separation task show that oMISI performs as well as its offline counterpart, thus demonstrating its potential for real-time source separation.

JulkaisuIEEE Signal Processing Letters
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Applied Mathematics


Sukella tutkimusaiheisiin 'Online Spectrogram Inversion for Low-Latency Audio Source Separation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä