Optimization procedure for predicting nonlinear time series based on a non-Gaussian noise model

Frank Emmert-Streib, Matthias Dehmer

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

In this article we investigate the influence of a Pareto-like noise model on the performance of an artificial neural network used to predict a nonlinear time series. A Pareto-like noise model is, in contrast to a Gaussian noise model, based on a power law distribution which has long tails compared to a Gaussian distribution. This allows for larger fluctuations in the deviation between predicted and observed values of the time series. We define an optimization procedure that minimizes the mean squared error of the predicted time series by maximizing the likelihood function based on the Pareto-like noise model. Numerical results for an artificial time series show that this noise model gives better results than a model based on Gaussian noise demonstrating that by allowing larger fluctuations the parameter space of the likelihood function can be search more efficiently. As a consequence, our results may indicate a more generic characteristics of optimization problems not restricted to problems from time series prediction.

AlkuperäiskieliEnglanti
OtsikkoLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Sivut540-549
Sivumäärä10
Vuosikerta4827 LNAI
DOI - pysyväislinkit
TilaJulkaistu - 2007
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
Tapahtuma6th Mexican International Conference on Artificial Intelligence, MICAI 2007 - Aguascalientes, Meksiko
Kesto: 4 marrask. 200710 marrask. 2007

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta4827 LNAI
ISSN (painettu)03029743
ISSN (elektroninen)16113349

Conference

Conference6th Mexican International Conference on Artificial Intelligence, MICAI 2007
Maa/AlueMeksiko
KaupunkiAguascalientes
Ajanjakso4/11/0710/11/07

!!ASJC Scopus subject areas

  • Yleinen biokemia, genetiikka ja molekyylibiologia
  • Yleinen tietojenkäsittelytiede
  • Theoretical Computer Science

Sormenjälki

Sukella tutkimusaiheisiin 'Optimization procedure for predicting nonlinear time series based on a non-Gaussian noise model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä