Order reduction for a signaling pathway model of neuronal synaptic plasticity

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    5 Sitaatiot (Scopus)

    Abstrakti

    In this study a nonlinear mathematical model of plasticity in the brain is reduced using the Proper Orthogonal Decomposition and Discrete Empirical Interpolation Method. Such methods are remarkably useful for connecting reduced small scale models via the inputs and outputs to form optimally performing large scale models. Novel results were obtained as mathematical model order reduction has not been applied in neuroscience without linearization of the mathematical model and never to the model presented here. The reduced order model consumes considerably less computational resources than the original while maintaining a low root mean square error between the original and reduced model.

    AlkuperäiskieliEnglanti
    Otsikko20th IFAC World Congress
    KustantajaIFAC
    Sivut7687-7692
    Sivumäärä6
    DOI - pysyväislinkit
    TilaJulkaistu - 1 heinäk. 2017
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIFAC World Congress -
    Kesto: 1 tammik. 2000 → …

    Julkaisusarja

    NimiIFAC-PapersOnLine
    Vuosikerta50
    ISSN (elektroninen)2405-8963

    Conference

    ConferenceIFAC World Congress
    Ajanjakso1/01/00 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Control and Systems Engineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'Order reduction for a signaling pathway model of neuronal synaptic plasticity'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä