OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose Estimation

Dingding Cai, Janne Heikkilä, Esa Rahtu

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

22 Sitaatiot (Scopus)
9 Lataukset (Pure)

Abstrakti

This paper proposes a universal framework, called OVE6D, for model-based 6D object pose estimation from a single depth image and a target object mask. Our model is trained using purely synthetic data rendered from ShapeNet, and, unlike most of the existing methods, it generalizes well on new real-world objects without any fine-tuning. We achieve this by decomposing the 6D pose into viewpoint, in-plane rotation around the camera optical axis and translation, and introducing novel lightweight modules for estimating each component in a cascaded manner. The resulting network contains less than 4M parameters while demon-strating excellent performance on the challenging T-LESS and Occluded LINEMOD datasets without any dataset-specific training. We show that OVE6D outperforms some contemporary deep learning-based pose estimation methods specifically trained for individual objects or datasets with real-world training data. The implementation is available at https://github.com/dingdingcai/OVE6D-pose.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
KustantajaIEEE
Sivut6793-6803
Sivumäärä11
ISBN (elektroninen)9781665469463
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - New Orleans, Yhdysvallat
Kesto: 18 kesäk. 202224 kesäk. 2022

Julkaisusarja

NimiIEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (painettu)1063-6919
ISSN (elektroninen)2575-7075

Conference

ConferenceIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso18/06/2224/06/22

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Sormenjälki

Sukella tutkimusaiheisiin 'OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä