TY - JOUR
T1 - Oxidation product characterization from ozonolysis of the diterpene ent-kaurene
AU - Luo, Yuanyuan
AU - Garmash, Olga
AU - Li, Haiyan
AU - Graeffe, Frans
AU - Praplan, Arnaud P.
AU - Liikanen, Anssi
AU - Zhang, Yanjun
AU - Meder, Melissa
AU - Peräkylä, Otso
AU - Peñuelas, Josep
AU - Yáñez-Serrano, Ana María
AU - Ehn, Mikael
N1 - Funding Information:
Open-access funding was provided by the Helsinki University Library.
Funding Information:
Financial support. This research has been supported by the European Research Council, Framework programme Horizon 2020 (COALA (grant no. 638703)) and the Framework programme FP7 (IMBALANCE-P (grant no. 610028)), the Academy of Finland (grant nos. 317380, 320094, 307797, and 314099), the Fundación Ramón Areces (grant ELEMENTAL-CLIMATE), the China Scholarship Council (grant no. 201906220191), the Spanish government (grant no. PID2019-110521GB-I00) and the Catalan government (grant nos. SGR 2017-1005 and AGAUR-2020PANDE00117).
Publisher Copyright:
© Copyright: Authors 2022
PY - 2022/4/27
Y1 - 2022/4/27
N2 - Diterpenes (C20H32) are biogenically emitted volatile compounds that only recently have been observed in ambient air. They are expected to be highly reactive, and their oxidation is likely to form condensable vapors. However, until now, no studies have investigated gas-phase diterpene oxidation. In this paper, we explored the ozonolysis of a diterpene, ent-kaurene, in a simulation chamber. Using state-of-the-art mass spectrometry, we characterized diterpene oxidation products for the first time, and we identified several products with varying oxidation levels, including highly oxygenated organic molecules (HOM), monomers, and dimers. The most abundant monomers measured using a nitrate chemical ionization mass spectrometer were C19H28O8 and C20H30O5, and the most abundant dimers were C38H60O6 and C39H62O6. The exact molar yield of HOM from kaurene ozonolysis was hard to quantify due to uncertainties in both the kaurene and HOM concentrations, but our best estimate was a few percent, which is similar to values reported earlier for many monoterpenes. We also monitored the decrease in the gas-phase oxidation products in response to an increased condensation sink in the chamber to deduce their affinity to condense. The oxygen content was a critical parameter affecting the volatility of products, with four to five O atoms needed for the main monomeric species to condense onto 80g nm particles. Finally, we report on the observed fragmentation and clustering patterns of kaurene in a Vocus proton-transfer-reaction time-of-flight mass spectrometer. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation, but more studies on different diterpenes are needed for a broader view of their role in atmospheric chemistry.
AB - Diterpenes (C20H32) are biogenically emitted volatile compounds that only recently have been observed in ambient air. They are expected to be highly reactive, and their oxidation is likely to form condensable vapors. However, until now, no studies have investigated gas-phase diterpene oxidation. In this paper, we explored the ozonolysis of a diterpene, ent-kaurene, in a simulation chamber. Using state-of-the-art mass spectrometry, we characterized diterpene oxidation products for the first time, and we identified several products with varying oxidation levels, including highly oxygenated organic molecules (HOM), monomers, and dimers. The most abundant monomers measured using a nitrate chemical ionization mass spectrometer were C19H28O8 and C20H30O5, and the most abundant dimers were C38H60O6 and C39H62O6. The exact molar yield of HOM from kaurene ozonolysis was hard to quantify due to uncertainties in both the kaurene and HOM concentrations, but our best estimate was a few percent, which is similar to values reported earlier for many monoterpenes. We also monitored the decrease in the gas-phase oxidation products in response to an increased condensation sink in the chamber to deduce their affinity to condense. The oxygen content was a critical parameter affecting the volatility of products, with four to five O atoms needed for the main monomeric species to condense onto 80g nm particles. Finally, we report on the observed fragmentation and clustering patterns of kaurene in a Vocus proton-transfer-reaction time-of-flight mass spectrometer. Our findings highlight similarities and differences between diterpenes and smaller terpenes during their atmospheric oxidation, but more studies on different diterpenes are needed for a broader view of their role in atmospheric chemistry.
U2 - 10.5194/acp-22-5619-2022
DO - 10.5194/acp-22-5619-2022
M3 - Article
AN - SCOPUS:85129230598
SN - 1680-7316
VL - 22
SP - 5619
EP - 5637
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 8
ER -