TY - JOUR
T1 - Oxidative ethanol dry reforming for production of syngas over Co-based catalyst
T2 - Effect of reaction temperature
AU - Fayaz, Fahim
AU - He, Chao
AU - Goel, Avishek
AU - Rintala, Jukka
AU - Konttinen, Jukka
N1 - Funding Information:
The authors acknowledge the financial support from the Universiti Malaysia Pahang (UMP) Research Grant Scheme ( RDU130376 ). Fahim Fayaz would like to thank Dr. Dai-Viet N. Vo for his invaluable guidance and support during the research work. Fahim Fayaz is also grateful for the funds received from the Institute of International Education’s Scholar Rescue Fund (IIE-SRF) and the Finnish National Agency for Education (EDUFI) for supporting his postdoctoral fellowship at Tampere University.
Publisher Copyright:
© 2023 The Authors
PY - 2023/6
Y1 - 2023/6
N2 - Till date, oxidative ethanol steam reforming use Ni-based catalysts to produce syngas. However, Ni catalysts suffer from easy deactivation due to the coke formation at low temperatures. Therefore, oxidative ethanol dry reforming is a promising method and was investigated over 10 %Co/Al2O3 catalyst due to their high activity and stability to produce high-quality syngas. More importantly, the syngas can be upgraded to produce liquid biofuels and chemicals. The catalyst was evaluated in a quartz fixed-bed reactor under atmospheric pressure at PCO2 =PO2= 5 kPa, PC2H5OH = 15 kPa, with reaction temperature ranging between 773 and 973 K. The γ-Al2O3 support and 10 %Co/Al2O3 catalyst had BET surface areas of 175.2 m2 g−1 and 143.1 m2 g−1, respectively. Co3O4 and spinel CoAl2O4 phases were detected through X-ray diffraction measurements on the 10 %Co/Al2O3 catalyst surface. H2-TPR measurements indicate that the 10 %Co/Al2O3 catalyst was completely reduced at a temperature beyond 1000 K. NH3-TPD measurements indicated the presence of the weak, medium, and strong acid sites on the γ-Al2O3 support and 10 %Co/Al2O3 catalyst. Due to increased reaction temperature from 773 to 973 K, C2H5OH and CO2 conversions improved from 22.5 % to 93.6 % and 16.9–52.8 %, respectively. Additionally, the optimal yield of H2 and CO obtained at 68.1 % and 58.3 %, respectively. Temperature-programmed oxidation experiments indicated that the amount of carbon deposition was the lowest (28,92 %) at 973 K and increased by 41.48 % at 773 K.
AB - Till date, oxidative ethanol steam reforming use Ni-based catalysts to produce syngas. However, Ni catalysts suffer from easy deactivation due to the coke formation at low temperatures. Therefore, oxidative ethanol dry reforming is a promising method and was investigated over 10 %Co/Al2O3 catalyst due to their high activity and stability to produce high-quality syngas. More importantly, the syngas can be upgraded to produce liquid biofuels and chemicals. The catalyst was evaluated in a quartz fixed-bed reactor under atmospheric pressure at PCO2 =PO2= 5 kPa, PC2H5OH = 15 kPa, with reaction temperature ranging between 773 and 973 K. The γ-Al2O3 support and 10 %Co/Al2O3 catalyst had BET surface areas of 175.2 m2 g−1 and 143.1 m2 g−1, respectively. Co3O4 and spinel CoAl2O4 phases were detected through X-ray diffraction measurements on the 10 %Co/Al2O3 catalyst surface. H2-TPR measurements indicate that the 10 %Co/Al2O3 catalyst was completely reduced at a temperature beyond 1000 K. NH3-TPD measurements indicated the presence of the weak, medium, and strong acid sites on the γ-Al2O3 support and 10 %Co/Al2O3 catalyst. Due to increased reaction temperature from 773 to 973 K, C2H5OH and CO2 conversions improved from 22.5 % to 93.6 % and 16.9–52.8 %, respectively. Additionally, the optimal yield of H2 and CO obtained at 68.1 % and 58.3 %, respectively. Temperature-programmed oxidation experiments indicated that the amount of carbon deposition was the lowest (28,92 %) at 973 K and increased by 41.48 % at 773 K.
KW - Cobalt
KW - Hydrogen
KW - Oxidative ethanol dry reforming
KW - Syngas
U2 - 10.1016/j.mtcomm.2023.105671
DO - 10.1016/j.mtcomm.2023.105671
M3 - Article
AN - SCOPUS:85149180952
SN - 2352-4928
VL - 35
JO - Materials Today Communications
JF - Materials Today Communications
M1 - 105671
ER -