Partition and colored distances in graphs induced to subsets of vertices and some of its applications

Mohammad Javad Nadjafi-Arani, Mahsa Mirzargar, Frank Emmert-Streib, Matthias Dehmer

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

1 Sitaatiot (Scopus)
7 Lataukset (Pure)

Abstrakti

If G is a graph and P is a partition of V(G), then the partition distance of G is the sum of the distances between all pairs of vertices that lie in the same part of P. A colored distance is the dual concept of the partition distance. These notions are motivated by a problem in the facility location network and applied to several well-known distance-based graph invariants. In this paper, we apply an extended cut method to induce the partition and color distances to some subsets of vertices which are not necessary a partition of V(G). Then, we define a two-dimensional weighted graph and an operator to prove that the induced partition and colored distances of a graph can be obtained from the weighted Wiener index of a two-dimensional weighted quotient graph induced by the transitive closure of the Djoković–Winkler relation as well as by any partition that is coarser. Finally, we utilize our main results to find some upper bounds for the modified Wiener index and the number of orbits of partial cube graphs under the action of automorphism group of graphs.

AlkuperäiskieliEnglanti
Artikkeli2027
Sivut1-13
Sivumäärä13
JulkaisuSymmetry
Vuosikerta12
Numero12
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • Yleinen matematiikka
  • Physics and Astronomy (miscellaneous)

Sormenjälki

Sukella tutkimusaiheisiin 'Partition and colored distances in graphs induced to subsets of vertices and some of its applications'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä