People stink! Towards identification of people from breath samples

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

2 Lataukset (Pure)

Abstrakti

The paper addresses the potential to use breath samples for identifying people. Participants were asked to exhale ten times for a length of five seconds to a tube attached to a commercial ion-mobility spectrometry device on three separate sessions. The data of each participant was divided into training (50% of the samples) and test data sets (50% of the samples) in random order. Classification decision tree (CDT), K nearest neighbor (KNN), naïve Bayes (NB), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to analyze if the data could be classified correctly. Within a session, KNN (75.2%), NB (78.3%), and LDA (85.8%) were able to identify participants. Between sessions, the performance decreased.
AlkuperäiskieliEnglanti
Otsikko2022 International Symposium on Olfaction and Electronic Nose (ISOEN)
KustantajaIEEE
Sivut1-3
ISBN (elektroninen)978-1-6654-5860-3
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Olfaction and Electronic Nose (ISOEN) - Aveiro, Portugali
Kesto: 29 toukok. 20221 kesäk. 2022

Conference

ConferenceIEEE International Symposium on Olfaction and Electronic Nose (ISOEN)
Maa/AluePortugali
KaupunkiAveiro
Ajanjakso29/05/221/06/22

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'People stink! Towards identification of people from breath samples'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä