Abstrakti
The paper addresses the potential to use breath samples for identifying people. Participants were asked to exhale ten times for a length of five seconds to a tube attached to a commercial ion-mobility spectrometry device on three separate sessions. The data of each participant was divided into training (50% of the samples) and test data sets (50% of the samples) in random order. Classification decision tree (CDT), K nearest neighbor (KNN), naïve Bayes (NB), linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) were used to analyze if the data could be classified correctly. Within a session, KNN (75.2%), NB (78.3%), and LDA (85.8%) were able to identify participants. Between sessions, the performance decreased.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2022 International Symposium on Olfaction and Electronic Nose (ISOEN) |
Kustantaja | IEEE |
Sivut | 1-3 |
ISBN (elektroninen) | 978-1-6654-5860-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - kesäk. 2022 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) - Aveiro, Portugali Kesto: 29 toukok. 2022 → 1 kesäk. 2022 |
Conference
Conference | IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) |
---|---|
Maa/Alue | Portugali |
Kaupunki | Aveiro |
Ajanjakso | 29/05/22 → 1/06/22 |
Julkaisufoorumi-taso
- Jufo-taso 1