Potential of renewable fuel to reduce diesel exhaust particle emissions

Liisa Pirjola, Heino Kuuluvainen, Hilkka Timonen, Sanna Saarikoski, Kimmo Teinilä, Laura Salo, Arindam Datta, Pauli Simonen, Panu Karjalainen, Kari Kulmala, Topi Rönkkö

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

30 Sitaatiot (Scopus)
78 Lataukset (Pure)


The use of fossil fuels in traffic is a significant source of air pollutants and greenhouse gases in rapidly growing and densely populated cities. Diesel exhaust emissions including particle number concentration and size distribution along with the particles’ chemical composition and NOx were investigated from a Euro 4 passenger car with a comprehensive set of high time-resolution instruments. The emissions were compared with three fuel standards – European diesel (EN590), Indian diesel (BS IV) and Finnish renewable diesel (Neste MY) – over the New European Driving Cycle (NEDC) and the Worldwide harmonized Light vehicles Test Cycle (WLTC). Fuel properties and driving conditions strongly affected exhaust emissions. The exhaust particulate mass emissions for all fuels consisted of BC (81–88%) with some contribution from organics (11–18%) and sulfate (0–3%). As aromatic-free fuel, the MY diesel produced around 20% lower black carbon (BC) emissions compared to the EN590 and 29–40% lower compared to the BS IV. High volatile nanoparticle concentrations at high WLTC speed conditions were observed with the BS IV and EN590 diesel, but not with the sulfur-free MY diesel. These nanoparticles were linked to sulfur-driven nucleation of new particles in cooling dilution of the exhaust. For all the fuels non-volatile nanoparticles in sub-10 nm particle sizes were observed during engine braking, and they were most likely formed from lubricant-oil-originated compounds. With all the fuels, the measured particulate and NOx emissions were significantly higher during the WLTC cycle compared to the NEDC cycle. This study demonstrated that renewable diesel fuels enable mitigations of particulate and climate-warming BC emissions of traffic, and will simultaneously help tackle urban air quality problems.

JulkaisuApplied Energy
DOI - pysyväislinkit
TilaJulkaistu - 15 marrask. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Building and Construction
  • Yleinen energiatiede
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law


Sukella tutkimusaiheisiin 'Potential of renewable fuel to reduce diesel exhaust particle emissions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä