Predicting elastic and plastic properties of small iron polycrystals by machine learning

Marcin Mińkowski, Lasse Laurson

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

4 Sitaatiot (Scopus)
10 Lataukset (Pure)

Abstrakti

Deformation of crystalline materials is an interesting example of complex system behaviour. Small samples typically exhibit a stochastic-like, irregular response to externally applied stresses, manifested as significant sample-to-sample variation in their mechanical properties. In this work we study the predictability of the sample-dependent shear moduli and yield stresses of a large set of small cube-shaped iron polycrystals generated by Voronoi tessellation, by combining molecular dynamics simulations and machine learning. Training a convolutional neural network to infer the mapping between the initial polycrystalline structure of the samples and features of the ensuing stress-strain curves reveals that the shear modulus can be predicted better than the yield stress. We discuss our results in the context of the sensitivity of the system’s response to small perturbations of its initial state.

AlkuperäiskieliEnglanti
Artikkeli13977
Sivumäärä19
JulkaisuScientific Reports
Vuosikerta13
Numero1
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • General

Sormenjälki

Sukella tutkimusaiheisiin 'Predicting elastic and plastic properties of small iron polycrystals by machine learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä