Predicting mode-locked fiber laser output using a feed-forward neural network

Xi Nyang Liu, Regina Gumenyuk

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

6 Lataukset (Pure)

Abstrakti

With a great ability to solve regression problems, the artificial neural network has become a powerful tool for advancing ultrafast laser research. In this work, we demonstrate the capability of a feed-forward neural network (FNN) to predict the output parameters of a mode-locked fiber laser, which mutually depend on multiple intracavity parameters, with high speed and accuracy. A direct mapping between cavity parameters and laser output is realized through the FNN-trained models, bypassing tedious iterative numerical simulation as a common approach to get a converged solution for a laser cavity. We show that the laser output spectrum and temporal pulse profiles can be accurately predicted with the normalized root mean square error (NRMSE) of less than 0.04 within only a 5 ms time frame for scenarios inside and outside the training data. We investigate the influence of FNN configuration on prediction performanceBoth gain and spectral filter parameters are explored to test the prediction capability of the trained FNN models at high speed. Straightforward and fast prediction of the laser output performance from varying laser intracavity parameters paves the way to intelligent short-pulsed lasers with inversed design or autonomous operation maintenance.

AlkuperäiskieliEnglanti
Artikkeli531790
Sivut1652-1659
Sivumäärä8
JulkaisuOptics Continuum
Vuosikerta3
Numero9
DOI - pysyväislinkit
TilaJulkaistu - 15 syysk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Sormenjälki

Sukella tutkimusaiheisiin 'Predicting mode-locked fiber laser output using a feed-forward neural network'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä