Prediction of residual stress distribution induced by ultrasonic nanocrystalline surface modification using machine learning

Chao Li, Auezhan Amanov, Yifei Li, Can Wang, Dagang Wang, Magd Abdel Wahab

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

Ultrasonic Nanocrystalline Surface Modification (UNSM) offers an efficient and cost-effective approach for enhancing material mechanical properties by inducing Severe Plastic Deformation (SPD). It leads to grain refinement and substantial residual stress generation beneath the workpiece surface. This study investigates the influence of key modification parameters, specifically static load, vibration amplitude, and strike tip size on compressive residual stress (CRS) distribution. A Finite Element Method (FEM)-based model for the UNSM process is developed, and validated against experimental outcomes, yielding a dataset of 45 unique cases across various modification scenarios. The Balancing Composite Motion Optimization (BCMO), as a meta-heuristic algorithm is used to optimize the hyperparameters of the Support Vector Regression (SVR) model. Additionally, the performance of Artificial Neural Network (ANN), Polynomial Chaotic Extension (PCE), and Kriging algorithms is evaluated in parallel. Among these Machine Learning (ML) models, the SVR-BCMO emerges as a pioneer for its accuracy in estimating residual stress. A sensitivity analysis employing Sobol’ indices further clarifies the distinct impact of each input parameter on residual stress distribution resulting from UNSM. In essence, this research offers a tool for rapidly estimating residual stress, even in cases of limited datasets. Furthermore, the findings help in making prompt decisions regarding of UNSM conditions. This is achieved by elucidating the effect of each input parameter and facilitating the determination of residual stresses in specific scenarios.

AlkuperäiskieliEnglanti
Artikkeli103570
JulkaisuAdvances in Engineering Software
Vuosikerta188
Varhainen verkossa julkaisun päivämäärä9 jouluk. 2023
DOI - pysyväislinkit
TilaJulkaistu - helmik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

This work was supported and funded by the Chinese Scholarship Council (CSC) and National Natural Science Foundation of China (Grant No. 521752055). This work was funded by National Natural Science Foundation of China (Grant No. 52175205 ) and the Chinese Scholarship Council (CSC), and supported under the framework of an international cooperation program managed by the National Research Foundation of Korea (FY2020K2A9A1A06103270). This research was also financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D Program ( P0022403 ).

RahoittajatRahoittajan numero
National Natural Science Foundation of China521752055, 52175205
Ministry of Trade, Industry and Energy
Korea Institute for Advancement of TechnologyP0022403
National Research Foundation of KoreaFY2020K2A9A1A06103270
China Scholarship Council

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Software
    • Yleinen tekniikka

    Sormenjälki

    Sukella tutkimusaiheisiin 'Prediction of residual stress distribution induced by ultrasonic nanocrystalline surface modification using machine learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä