Predictive modeling using sparse logistic regression with applications

Julkaisun otsikon käännös: Predictive modeling using sparse logistic regression with applications

Tapio Manninen

    Tutkimustuotos: VäitöskirjaMonografia

    2178 Lataukset (Pure)

    Abstrakti

    In this thesis, sparse logistic regression models are applied in a set of real world machine learning applications. The studied cases include supervised image segmentation, cancer diagnosis, and MEG data classification. Image segmentation is applied both in component detection in inkjet printed electronics manufacturing and in cell detection from microscope images. The results indicate that a simple linear classification method such as logistic regression often outperforms more sophisticated methods. Further, it is shown that the interpretability of the linear model offers great advantage in many applications. Model validation and automatic feature selection by means of L1 regularized parameter estimation have a significant role in this thesis. It is shown that a combination of a careful model assessment scheme and automatic feature selection by means of logistic regression model and coefficient regularization create a powerful, yet simple and practical, tool chain for applications of supervised learning and classification.
    Julkaisun otsikon käännösPredictive modeling using sparse logistic regression with applications
    AlkuperäiskieliEnglanti
    JulkaisupaikkaTampere
    KustantajaTampere University of Technology
    Sivumäärä97
    ISBN (elektroninen)978-952-15-3233-7
    ISBN (painettu)978-952-15-3226-9
    TilaJulkaistu - 31 tammik. 2014
    OKM-julkaisutyyppiG4 Monografiaväitöskirja

    Julkaisusarja

    NimiTampere University of Techology. Publication
    KustantajaTampere University of Technology
    Vuosikerta1190
    ISSN (painettu)1459-2045

    Sormenjälki

    Sukella tutkimusaiheisiin 'Predictive modeling using sparse logistic regression with applications'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä