Probabilistic Modelling of Defects in Additive Manufacturing: A Case Study in Powder Bed Fusion Technology

Hossein Mokhtarian, Azarakhsh Hamedi, Hari Nagarajan, Suraj Panicker, Eric Coatanea, Karl Haapala

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

4 Sitaatiot (Scopus)
84 Lataukset (Pure)

Abstrakti

Implementation of additive manufacturing into product manufacturing suffers from the challenge of part defects prediction. Due to interdependencies of design variables and manufacturing parameters in achieving suitable part quality, modelling methods are necessary to provide simulation capabilities for part quality analysis at early stages of product development. A systematic methodology is proposed to extract cause-effect relationships among variables and to transform this causal model into a Bayesian network. The Bayesian network is then used to predict the effect of specific design and manufacturing parameters on part defects and to estimate the needed input parameters backwards, based on acceptable output values.
AlkuperäiskieliEnglanti
Otsikko52nd CIRP Conference on Manufacturing Systems
KustantajaElsevier
Sivut956-961
DOI - pysyväislinkit
TilaJulkaistu - 31 jouluk. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaCIRP Conference on Manufacturing Systems -
Kesto: 1 tammik. 2000 → …

Julkaisusarja

NimiProcedia CIRP
Vuosikerta81
ISSN (elektroninen)2212-8271

Conference

ConferenceCIRP Conference on Manufacturing Systems
Ajanjakso1/01/00 → …

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Probabilistic Modelling of Defects in Additive Manufacturing: A Case Study in Powder Bed Fusion Technology'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä