Properties of entropy-based topological measures of fullerenes

Modjtaba Ghorbani, Matthias Dehmer, Frank Emmert-Streib

Tutkimustuotos: Katsausartikkelivertaisarvioitu

9 Sitaatiot (Scopus)
30 Lataukset (Pure)

Abstrakti

Afullerene is a cubic three-connected graph whose faces are entirely composed of pentagons and hexagons. Entropy applied to graphs is one of the significant approaches to measuring the complexity of relational structures. Recently, the research on complex networks has received great attention, because many complex systems can be modelled as networks consisting of components as well as relations among these components. Information-theoretic measures have been used to analyze chemical structures possessing bond types and hetero-atoms. In the present article, we reviewed various entropy-based measures on fullerene graphs. In particular, we surveyed results on the topological information content of a graph, namely the orbit-entropy Ia(G), the symmetry index, a degree-based entropy measure Iλ(G), the eccentric-entropy ifσ(G) and the Hosoya entropy H(G).

AlkuperäiskieliEnglanti
Artikkeli740
JulkaisuMathematics
Vuosikerta8
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2020
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 0

!!ASJC Scopus subject areas

  • Yleinen matematiikka

Sormenjälki

Sukella tutkimusaiheisiin 'Properties of entropy-based topological measures of fullerenes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä