Reference Channel Selection by Multi-Channel Masking for End-to-End Multi-Channel Speech Enhancement

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

4 Lataukset (Pure)

Abstrakti

In end-to-end multi-channel speech enhancement, the traditional approach of designating one microphone signal as the reference for processing may not always yield optimal results. The limitation is particularly in scenarios with large distributed microphone arrays with varying speaker-to-microphone distances or compact, highly directional microphone arrays where speaker or microphone positions change over time. Current mask-based methods often fix the reference channel during training, which makes it not possible to adaptively select the reference channel for optimal performance. To address this problem, we introduce an adaptive approach for selecting the optimal reference channel. Our method leverages a multi-channel masking-based scheme, where multiple masked signals are combined to generate a single-channel output signal. This enhanced signal is then used for loss calculation, while the reference clean speech is adjusted based on the highest scale-invariant signal-to-distortion ratio (SI-SDR). The experimental results on the Spear challenge simulated dataset D4 demonstrate the superiority of our proposed method over the conventional approach of using a fixed reference channel with single-channel masking.

AlkuperäiskieliEnglanti
Otsikko2024 32nd European Signal Processing Conference (EUSIPCO)
KustantajaIEEE
Sivut241-245
Sivumäärä5
ISBN (elektroninen)9789464593617
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Lyon, Ranska
Kesto: 26 elok. 202430 elok. 2024

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491

Conference

ConferenceEuropean Signal Processing Conference
Maa/AlueRanska
KaupunkiLyon
Ajanjakso26/08/2430/08/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Reference Channel Selection by Multi-Channel Masking for End-to-End Multi-Channel Speech Enhancement'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä