Reinforcement learning page prediction for hierarchically ordered municipal websites

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

20 Lataukset (Pure)

Abstrakti

Public websites offer information on a variety of topics and services and are accessed by users with varying skills to browse the kind of electronic document repositories. However, the complex website structure and diversity of web browsing behavior create a challenging task for click prediction. This paper presents the results of a novel reinforcement learning approach to model user browsing patterns in a hierarchically ordered municipal website. We study how accurate predictor the browsing history is, when the target pages are not immediate next pages pointed by hyperlinks, but appear a number of levels down the hierarchy. We compare traditional type of baseline classifiers’ performance against our reinforcement learning-based training algorithm.

AlkuperäiskieliEnglanti
Artikkeli231
JulkaisuInformation (Switzerland)
Vuosikerta12
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 28 toukok. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 0

!!ASJC Scopus subject areas

  • Information Systems

Sormenjälki

Sukella tutkimusaiheisiin 'Reinforcement learning page prediction for hierarchically ordered municipal websites'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä