Relating Description Complexity to Entropy

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

1 Lataukset (Pure)


We demonstrate some novel links between entropy and description complexity, a notion referring to the minimal formula length for specifying given properties. Let MLU be the logic obtained by extending propositional logic with the universal modality, and let GMLU be the corresponding extension with the ability to count. In the finite, MLU is expressively complete for specifying sets of variable assignments, while GMLU is expressively complete for multisets. We show that for MLU, the model classes with maximal Boltzmann entropy are the ones with maximal description complexity. Concerning GMLU, we show that expected Boltzmann entropy is asymptotically equivalent to expected description complexity multiplied by the number of proposition symbols considered. To contrast these results, we prove that this link breaks when we move to considering first-order logic FO over vocabularies with higher-arity relations. To establish the aforementioned result, we show that almost all finite models require relatively large FO-formulas to define them. Our results relate to links between Kolmogorov complexity and entropy, demonstrating a way to conceive such results in the logic-based scenario where relational structures are classified by formulas of different sizes.

Otsikko40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023
ToimittajatPetra Berenbrink, Patricia Bouyer, Anuj Dawar, Mamadou Moustapha Kante
ISBN (elektroninen)9783959772662
DOI - pysyväislinkit
TilaJulkaistu - 1 maalisk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Symposium on Theoretical Aspects of Computer Science - Hamburg, Saksa
Kesto: 7 maalisk. 20239 maalisk. 2023


NimiLeibniz International Proceedings in Informatics, LIPIcs
ISSN (painettu)1868-8969


ConferenceInternational Symposium on Theoretical Aspects of Computer Science


  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Software


Sukella tutkimusaiheisiin 'Relating Description Complexity to Entropy'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä