Relating description complexity to entropy

Reijo Jaakkola, Antti Kuusisto, Miikka Vilander

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

6 Lataukset (Pure)

Abstrakti

We demonstrate novel links between entropy and description complexity, a notion referring to the minimal formula length for specifying given properties. Let PLC denote propositional logic with the ability to count assignments, and let PLC1 be the fragment that counts only to one, essentially quantifying assignments. In the finite, PLC1 is expressively complete for specifying sets of variable assignments, while PLC is expressively complete for multisets. We show that for both logics, the model classes with maximal Boltzmann entropy are the ones with maximal description complexity. Concerning PLC, we show that expected Boltzmann entropy is asymptotically equivalent to expected description complexity multiplied by the number of proposition symbols considered. For contrast, we prove this link breaks for first-order logic over vocabularies with higher-arity relations. Our results relate to links between Kolmogorov complexity and entropy, providing analogous results in the logic-based scenario with relational structures classified by formulas of different sizes.

AlkuperäiskieliEnglanti
Artikkeli103615
JulkaisuJournal of Computer and System Sciences
Vuosikerta149
Varhainen verkossa julkaisun päivämäärä11 jouluk. 2024
DOI - pysyväislinkit
TilaJulkaistu - toukok. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 3

!!ASJC Scopus subject areas

  • Theoretical Computer Science
  • Yleinen tietojenkäsittelytiede
  • Computer Networks and Communications
  • Computational Theory and Mathematics
  • Applied Mathematics

Sormenjälki

Sukella tutkimusaiheisiin 'Relating description complexity to entropy'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä