Remarks on Gibbs Permutation Matrices for Ternary Bent Functions

Radomir S. Stanković, Milena Stanković, Claudio Moraga, Jaakko T. Astola

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

Abstrakti

As in the binary case, ternary bent functions are a very small portion of the set of all ternary functions for a given number of variables. For example, for n = 2, there are 486 ternary bent functions out of 19683 ternary functions, which is 2, 47%, and this number reduces exponentially with the increase of n. However, finding, or alternatively, constructing them is a challenging task. A possible approach is based upon the manipulation of known ternary bent functions to construct other ternary bent functions. In this paper, we define Gibbs permutation matrices derived from the Gibbs derivative with respect to the Vilenkin-Chrestenson transform and propose their usage in constructing bent functions. The method can be extended to p-valued bent functions, where p is a prime larger than 3.

AlkuperäiskieliEnglanti
OtsikkoProceedings - 2023 IEEE 53rd International Symposium on Multiple-Valued Logic, ISMVL 2023
KustantajaIEEE
Sivut70-75
Sivumäärä6
ISBN (elektroninen)978-1-6654-6416-1
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Multiple-Valued Logic - Matsue, Japani
Kesto: 22 toukok. 202324 toukok. 2023

Julkaisusarja

NimiProceedings of The International Symposium on Multiple-Valued Logic
ISSN (painettu)0195-623X
ISSN (elektroninen)2378-2226

Conference

ConferenceIEEE International Symposium on Multiple-Valued Logic
Maa/AlueJapani
KaupunkiMatsue
Ajanjakso22/05/2324/05/23

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Yleinen tietojenkäsittelytiede
  • Yleinen matematiikka

Sormenjälki

Sukella tutkimusaiheisiin 'Remarks on Gibbs Permutation Matrices for Ternary Bent Functions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä