Representative class vector clustering-based discriminant analysis

Alexandros Iosifidis, Anastasios Tefas, Ioannis Pitas

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    3 Sitaatiot (Scopus)

    Abstrakti

    Clustering-based Discriminant Analysis (CDA) is a well-known technique for supervised feature extraction and dimensionality reduction. CDA determines an optimal discriminant subspace for linear data projection based on the assumptions of normal subclass distributions and subclass representation by using the mean subclass vector. However, in several cases, there might be other subclass representative vectors that could be more discriminative, compared to the mean subclass vectors. In this paper we propose an optimization scheme aiming at determining the optimal subclass representation for CDA-based data projection. The proposed optimization scheme has been evaluated on standard classification problems, as well as on two publicly available human action recognition databases providing enhanced class discrimination, compared to the standard CDA approach.

    AlkuperäiskieliEnglanti
    OtsikkoProceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013
    KustantajaIEEE COMPUTER SOCIETY PRESS
    Sivut526-529
    Sivumäärä4
    ISBN (painettu)9780769551203
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    Tapahtuma9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013 - Beijing, Kiina
    Kesto: 16 lokak. 201318 lokak. 2013

    Conference

    Conference9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013
    Maa/AlueKiina
    KaupunkiBeijing
    Ajanjakso16/10/1318/10/13

    !!ASJC Scopus subject areas

    • Artificial Intelligence
    • Information Systems
    • Signal Processing

    Sormenjälki

    Sukella tutkimusaiheisiin 'Representative class vector clustering-based discriminant analysis'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä