Revealing differences in gene network inference algorithms on the network level by ensemble methods

Gökmen Altay, Frank Emmert-Streib

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

81 Sitaatiot (Scopus)

Abstrakti

Motivation: The inference of regulatory networks from large-scale expression data holds great promise because of the potentially causal interpretation of these networks. However, due to the difficulty to establish reliable methods based on observational data there is so far only incomplete knowledge about possibilities and limitations of such inference methods in this context. Results: In this article, we conduct a statistical analysis investigating differences and similarities of four network inference algorithms, ARACNE, CLR, MRNET and RN, with respect to local network-based measures. We employ ensemble methods allowing to assess the inferability down to the level of individual edges. Our analysis reveals the bias of these inference methods with respect to the inference of various network components and, hence, provides guidance in the interpretation of inferred regulatory networks from expression data. Further, as application we predict the total number of regulatory interactions in human B cells and hypothesize about the role of Myc and its targets regarding molecular information processing.

AlkuperäiskieliEnglanti
Artikkelibtq259
Sivut1738-1744
Sivumäärä7
JulkaisuBioinformatics
Vuosikerta26
Numero14
DOI - pysyväislinkit
TilaJulkaistu - 25 toukok. 2010
Julkaistu ulkoisestiKyllä
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

!!ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Computational Theory and Mathematics
  • Computer Science Applications
  • Computational Mathematics
  • Statistics and Probability
  • Yleinen lääketiede

Sormenjälki

Sukella tutkimusaiheisiin 'Revealing differences in gene network inference algorithms on the network level by ensemble methods'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä