Revealing driver’s natural behavior—a guha data mining approach

Esko Turunen, Klara Dolos

Tutkimustuotos: ArtikkeliTieteellinenvertaisarvioitu

3 Sitaatiot (Scopus)
29 Lataukset (Pure)

Abstrakti

We investigate the applicability and usefulness of the GUHA data mining method and its computer implementation LISp-Miner for driver characterization based on digital vehicle data on gas pedal position, vehicle speed, and others. Three analytical questions are assessed: (1) Which measured features, also called attributes, distinguish each driver from all other drivers? (2) Comparing one driver separately in pairs with each of the other drivers, which are the most distinguishing attributes? (3) Comparing one driver separately in pairs with each of the other drivers, which attributes values show significant differences between drivers? The analyzed data consist of 94,380 measurements and contain clear and understandable patterns to be found by LISp-Miner. In conclusion, we find that the GUHA method is well suited for such tasks.

AlkuperäiskieliEnglanti
Artikkeli1818
Sivumäärä10
JulkaisuMathematics
Vuosikerta9
Numero15
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

This study has been conducted within the framework of COST Action CA17124 DigForASP.

Julkaisufoorumi-taso

  • Jufo-taso 0

!!ASJC Scopus subject areas

  • Yleinen matematiikka

Sormenjälki

Sukella tutkimusaiheisiin 'Revealing driver’s natural behavior—a guha data mining approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä