Robustifying correspondence based 6D object pose estimation

Antti Hietanen, Jussi Halme, Anders Glent Buch, Jyrki Latokartano, J.-K. Kamarainen

    Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

    9 Lataukset (Pure)

    Abstrakti

    We propose two methods to robustify point correspondence based 6D object pose estimation. The first method, curvature filtering, is based on the assumption that low curvature regions provide false matches, and removing points in these regions improves robustness. The second method, region pruning, is more general by making no assumptions about local surface properties. Our region pruning segments a model point cloud into cluster regions and searches good region combinations using a validation set. The robustifying methods are general and can be used with any correspondence based method. For the experiments, we evaluated three correspondence selection methods, Geometric Consistency (GC) [1], Hough Grouping (HG) [2] and Search of Inliers (SI) [3] and report systematic improvements for their robustified versions with two distinct datasets.

    AlkuperäiskieliEnglanti
    OtsikkoICRA 2017 - IEEE International Conference on Robotics and Automation
    KustantajaIEEE
    Sivut739-745
    Sivumäärä7
    ISBN (elektroninen)9781509046331
    DOI - pysyväislinkit
    TilaJulkaistu - 21 heinäk. 2017
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaIEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION -
    Kesto: 1 tammik. 19001 tammik. 2000

    Conference

    ConferenceIEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
    Ajanjakso1/01/001/01/00

    Julkaisufoorumi-taso

    • Jufo-taso 1

    !!ASJC Scopus subject areas

    • Control and Systems Engineering
    • Software
    • Artificial Intelligence
    • Electrical and Electronic Engineering

    Sormenjälki

    Sukella tutkimusaiheisiin 'Robustifying correspondence based 6D object pose estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä