RSS Fingerprinting Dataset Size Reduction Using Feature-Wise Adaptive k-Means Clustering

Lucie Klus, Darwin Quezada-Gaibor, Joaquin Torres-Sospedra, Elena Simona Lohan, Carlos Granell, Jari Nurmi

Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

5 Lataukset (Pure)

Abstrakti

Modern IoT devices, that include smartphones and wearables, usually have limited resources. They require efficient methods to optimize the use of internal storage, provide computational efficiency, and reduce energy consumption. Device resources should be used appropriately, especially when employed for time-consuming and energy-intensive computations such as positioning or localization. However, reducing computational costs usually degrades the positioning methods. Therefore, the goal of this article is to propose and compare compression mechanisms of the fingerprinting datasets for energy-saving without losing relevant information, by using adaptive k-means clustering. As a result, we achieved a compression ratio of up to 15.97 with a small decrease (1%) in position error.

AlkuperäiskieliEnglanti
Otsikko2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2020
KustantajaIEEE
Sivut195-200
Sivumäärä6
ISBN (elektroninen)9781728192819
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Congress on Ultra Modern Telecommunications and Control Systems and Workshops - Brno, Tshekki
Kesto: 5 lokak. 20207 lokak. 2020

Julkaisusarja

NimiInternational Congress on Ultra Modern Telecommunications and Control Systems and Workshops
Vuosikerta2020-October
ISSN (painettu)2157-0221
ISSN (elektroninen)2157-023X

Conference

ConferenceInternational Congress on Ultra Modern Telecommunications and Control Systems and Workshops
Maa/AlueTshekki
KaupunkiBrno
Ajanjakso5/10/207/10/20

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'RSS Fingerprinting Dataset Size Reduction Using Feature-Wise Adaptive k-Means Clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä