Abstrakti
Modern IoT devices, that include smartphones and wearables, usually have limited resources. They require efficient methods to optimize the use of internal storage, provide computational efficiency, and reduce energy consumption. Device resources should be used appropriately, especially when employed for time-consuming and energy-intensive computations such as positioning or localization. However, reducing computational costs usually degrades the positioning methods. Therefore, the goal of this article is to propose and compare compression mechanisms of the fingerprinting datasets for energy-saving without losing relevant information, by using adaptive k-means clustering. As a result, we achieved a compression ratio of up to 15.97 with a small decrease (1%) in position error.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT 2020 |
Kustantaja | IEEE |
Sivut | 195-200 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781728192819 |
DOI - pysyväislinkit | |
Tila | Julkaistu - lokak. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Congress on Ultra Modern Telecommunications and Control Systems and Workshops - Brno, Tshekki Kesto: 5 lokak. 2020 → 7 lokak. 2020 |
Julkaisusarja
Nimi | International Congress on Ultra Modern Telecommunications and Control Systems and Workshops |
---|---|
Vuosikerta | 2020-October |
ISSN (painettu) | 2157-0221 |
ISSN (elektroninen) | 2157-023X |
Conference
Conference | International Congress on Ultra Modern Telecommunications and Control Systems and Workshops |
---|---|
Maa/Alue | Tshekki |
Kaupunki | Brno |
Ajanjakso | 5/10/20 → 7/10/20 |
Julkaisufoorumi-taso
- Jufo-taso 1
!!ASJC Scopus subject areas
- Computer Networks and Communications
- Control and Systems Engineering
Sormenjälki
Sukella tutkimusaiheisiin 'RSS Fingerprinting Dataset Size Reduction Using Feature-Wise Adaptive k-Means Clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Tietoaineistot
-
Supplementary materials for "RSS fingerprinting dataset size reduction using feature-wise adaptive k-means clustering"
Klus, L. (Creator), Quezada Gaibor, D. (Creator) & Torres-Sospedra, J. (Creator), Zenodo, 1 syysk. 2020
DOI - pysyväislinkki: 10.5281/zenodo.4026370
Tietoaineisto: Dataset