Scalable and Efficient Clustering for Fingerprint-Based Positioning

Joaquín Torres-Sospedra, Darwin Quezada-Gaibor, Jari Nurmi, Yevgeni Koucheryavy, Elena Simona Lohan, Joaquín Huerta

Tutkimustuotos: ArtikkeliScientificvertaisarvioitu

1 Lataukset (Pure)

Abstrakti

Indoor Positioning based on wifi fingerprinting needs a reference dataset, also known as a radio map, in order to match the incoming fingerprint in the operational phase with the most similar fingerprint in the dataset and then estimate the device position indoors. Scalability problems may arise when the radio map is large, e.g., providing positioning in large geographical areas or involving crowdsourced data collection. Some researchers divide the radio map into smaller independent clusters, such that the search area is reduced to less dense groups than the initial database with similar features. Thus, the computational load in the operational stage is reduced both at the user devices and on servers. Nevertheless, the clustering models are machine-learning algorithms without specific domain knowledge on indoor positioning or signal propagation. This work proposes several clustering variants to optimize the coarse and fine-grained search and evaluates them over different clustering models and datasets. Moreover, we provide guidelines to obtain efficient and accurate positioning depending on the dataset features. Finally, we show that the proposed new clustering variants reduce the execution time by half and the positioning error by ≈7% with respect to fingerprinting with the traditional clustering models.
AlkuperäiskieliEnglanti
Sivut3484-3499
JulkaisuIEEE Internet of Things Journal
Vuosikerta10
Numero4
Varhainen verkossa julkaisun päivämäärä20 jouluk. 2022
DOI - pysyväislinkit
TilaJulkaistu - 15 helmik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Signal Processing
  • Information Systems
  • Hardware and Architecture
  • Computer Science Applications
  • Computer Networks and Communications

Sormenjälki

Sukella tutkimusaiheisiin 'Scalable and Efficient Clustering for Fingerprint-Based Positioning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä