Self-Organizing Binary Encoding for Approximate Nearest Neighbor Search

Ezgi Can Ozan, Serkan Kiranyaz, Moncef Gabbouj, Xiaohua Hu

    Tutkimustuotos: KonferenssiartikkeliScientificvertaisarvioitu

    Abstrakti

    Approximate Nearest Neighbor (ANN) search for indexing and retrieval has become very popular with the recent growth of the databases in both size and dimension. In this paper, we propose a novel method for fast approximate distance calculation among the compressed samples. Inspiring from Kohonen’s self-organizing maps, we propose a structured hierarchical quantization scheme in order to compress database samples in a more efficient way. Moreover, we introduce an error correction stage for encoding, which further improves the
    performance of the proposed method. The results on publicly available benchmark datasets demonstrate that the proposed method outperforms many well-known methods with comparable computational cost and storage space.
    AlkuperäiskieliEnglanti
    Otsikko2016 24th European Signal Processing Conference (EUSIPCO)
    KustantajaIEEE
    Sivut1103-1107
    Sivumäärä5
    ISBN (painettu)978-0-9928-6265-7
    TilaJulkaistu - 2016
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    TapahtumaEUROPEAN SIGNAL PROCESSING CONFERENCE -
    Kesto: 1 tammik. 1900 → …

    Julkaisusarja

    Nimi
    ISSN (elektroninen)2076-1465

    Conference

    ConferenceEUROPEAN SIGNAL PROCESSING CONFERENCE
    Ajanjakso1/01/00 → …

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Self-Organizing Binary Encoding for Approximate Nearest Neighbor Search'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä