Self-Supervised Learning of Audio Representations using Angular Contrastive Loss

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

In Self-Supervised Learning (SSL), various pretext tasks are designed for learning feature representations through contrastive loss. However, previous studies have shown that this loss is less tolerant to semantically similar samples due to the inherent defect of instance discrimination objectives, which may harm the quality of learned feature embeddings used in downstream tasks. To improve the discriminative ability of feature embeddings in SSL, we propose a new loss function called Angular Contrastive Loss (ACL), a linear combination of angular margin and contrastive loss. ACL improves contrastive learning by explicitly adding an angular margin between positive and negative augmented pairs in SSL. Experimental results show that using ACL for both supervised and unsupervised learning significantly improves performance. We validated our new loss function using the FSDnoisy18k dataset, where we achieved 73.6% and 77.1% accuracy in sound event classification using supervised and self-supervised learning, respectively.

AlkuperäiskieliEnglanti
OtsikkoICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
KustantajaIEEE
ISBN (elektroninen)978-1-7281-6327-7
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Rhodes Island, Kreikka
Kesto: 4 kesäk. 202310 kesäk. 2023

Julkaisusarja

NimiICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Vuosikerta2023-June
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Maa/AlueKreikka
KaupunkiRhodes Island
Ajanjakso4/06/2310/06/23

Julkaisufoorumi-taso

  • Jufo-taso 2

!!ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Self-Supervised Learning of Audio Representations using Angular Contrastive Loss'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä