Semantic aspect discovery for online reviews

Md Hijbul Alam, Sang Keun Lee

    Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

    11 Sitaatiot (Scopus)

    Abstrakti

    The number of opinions and reviews about different products and services is growing online. Users frequently look for important aspects of a product or service in the reviews. Usually, they are interested in semantic (i.e., sentiment-oriented) aspects. However, extracting semantic aspects with supervised methods is very expensive. We propose a domain independent unsupervised model to extract semantic aspects, and conduct qualitative and quantitative experiments to evaluate the extracted aspects. The experiments show that our model effectively extracts semantic aspects with correlated top words. In addition, the conducted evaluation on aspect sentiment classification shows that our model outperforms other models by 5-7% in terms of macro-average F1.

    AlkuperäiskieliEnglanti
    OtsikkoProceedings - 12th IEEE International Conference on Data Mining, ICDM 2012
    Sivut816-821
    Sivumäärä6
    DOI - pysyväislinkit
    TilaJulkaistu - 2012
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
    Tapahtuma12th IEEE International Conference on Data Mining, ICDM 2012 -
    Kesto: 1 tammik. 2012 → …

    Conference

    Conference12th IEEE International Conference on Data Mining, ICDM 2012
    Ajanjakso1/01/12 → …

    Tutkimusalat

    • Aspect discovery
    • Opinion mining
    • Sentiment analysis
    • Topic model

    Julkaisufoorumi-taso

    • Jufo-taso 1

    Sormenjälki

    Sukella tutkimusaiheisiin 'Semantic aspect discovery for online reviews'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä