Short Boolean Formulas as Explanations in Practice

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

12 Lataukset (Pure)

Abstrakti

We investigate explainability via short Boolean formulas in the data model based on unary relations. As an explanation of length k, we take a Boolean formula of length k that minimizes the error with respect to the target attribute to be explained. We first provide novel quantitative bounds for the expected error in this scenario. We then also demonstrate how the setting works in practice by studying three concrete data sets. In each case, we calculate explanation formulas of different lengths using an encoding in Answer Set Programming. The most accurate formulas we obtain achieve errors similar to other methods on the same data sets. However, due to overfitting, these formulas are not necessarily ideal explanations, so we use cross validation to identify a suitable length for explanations. By limiting to shorter formulas, we obtain explanations that avoid overfitting but are still reasonably accurate and also, importantly, human interpretable.
AlkuperäiskieliEnglanti
OtsikkoLogics in Artificial Intelligence
ToimittajatSarah Gaggl, Maria Vanina Martinez, Magdalena Ortiz
KustantajaSpringer
Sivut90-105
Sivumäärä16
Vuosikerta14281
ISBN (elektroninen)978-3-031-43619-2
ISBN (painettu)978-3-031-43618-5
DOI - pysyväislinkit
TilaJulkaistu - 24 syysk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Conference on Logics in Artificial Intelligence - Dresden, Saksa
Kesto: 20 syysk. 202322 syysk. 2023

Julkaisusarja

NimiLecture Notes in Computer Science
Vuosikerta14281
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Conference on Logics in Artificial Intelligence
Maa/AlueSaksa
KaupunkiDresden
Ajanjakso20/09/2322/09/23

Julkaisufoorumi-taso

  • Jufo-taso 1

Sormenjälki

Sukella tutkimusaiheisiin 'Short Boolean Formulas as Explanations in Practice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä