SingleDemoGrasp: Learning to Grasp From a Single Image Demonstration

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

11 Lataukset (Pure)

Abstrakti

Learning-based grasping models typically require a large amount of training data and training time to generate an effective grasping model. Alternatively, small non-generic grasp models have been proposed that are tailored to specific objects by, for example, directly predicting the object's location in 2/3D space, and determining suitable grasp poses by post processing. In both cases, data generation is a bottleneck, as this needs to be separately collected and annotated for each individual object and image. In this work, we tackle these issues and propose a grasping model that is developed in four main steps: 1. Visual object grasp demonstration, 2. Data augmentation, 3. Grasp detection model training and 4. Robot grasping action. Four different vision-based grasp models are evaluated with industrial and 3D printed objects, robot and standard gripper, in both simulation and real environments. The grasping model is implemented in the OpenDR toolkit at: https://github.com/opendr-eu/opendr/tree/master/projects/control/single_demo_grasp.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE 18th International Conference on Automation Science and Engineering, CASE 2022
KustantajaIEEE
Sivut390-396
Sivumäärä7
ISBN (elektroninen)9781665490429
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Automation Science and Engineering - Mexico City, Meksiko
Kesto: 20 elok. 202224 elok. 2022

Julkaisusarja

NimiIEEE International Conference on Automation Science and Engineering
Vuosikerta2022-August
ISSN (painettu)2161-8070
ISSN (elektroninen)2161-8089

Conference

ConferenceIEEE International Conference on Automation Science and Engineering
Maa/AlueMeksiko
KaupunkiMexico City
Ajanjakso20/08/2224/08/22

Rahoitus

Project funding was received from European Union’s Horizon 2020 research and innovation programme, grant no. 871449 (OpenDR) and no. 825196 (TRINITY).

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'SingleDemoGrasp: Learning to Grasp From a Single Image Demonstration'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä