Slippage Prediction in Microrobotic Fiber Characterization

Ali Zarei, Dhanesh K. Rajan, Pasi Kallio

Tutkimustuotos: KonferenssiartikkeliTieteellinenvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

The grasp assessment is one of the hot topics in robotics. The robotic gripper can be equipped with tactile, force and/or torque sensors to monitor the interaction between the grasped object and the gripper. In this study, a grasp assessment protocol of cellulose-based aerogel fibers inside microgrippers is proposed in a microrobotic platform which is dedicated to tensile testing of short natural fibers. In this study, the positions of micro-actuators and the microscopic images of the grasped fibers are used to predict the suitability of the grasp for tensile testing as an example of a fiber characterization task. Employing conventional machine learning methods and deep neural networks, the slippage of an aerogel fiber inside the microgrippers is predicted before starting the task of tensile test. The visual data are used for training of a convolutional neural network which results in an accuracy of 85% and recall of 68% in average. By using position data of microactuators for training Support Vector Machine (SVM), Logistic Regression, and K-Nearest Neighbor (KNN) models, an accuracy of 72% and recall of 63% are reached in average.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE 20th International Conference on Automation Science and Engineering, CASE 2024
JulkaisupaikkaBari, Italy
KustantajaIEEE
Sivut3975-3982
Sivumäärä8
ISBN (elektroninen)9798350358513
ISBN (painettu)979-8-3503-5852-0
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Automation Science and Engineering - Bari, Italia
Kesto: 28 elok. 20241 syysk. 2024

Julkaisusarja

NimiIEEE International Conference on Automation Science and Engineering
ISSN (painettu)2161-8070
ISSN (elektroninen)2161-8089

Conference

ConferenceIEEE International Conference on Automation Science and Engineering
Maa/AlueItalia
KaupunkiBari
Ajanjakso28/08/241/09/24

Julkaisufoorumi-taso

  • Jufo-taso 1

!!ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Sormenjälki

Sukella tutkimusaiheisiin 'Slippage Prediction in Microrobotic Fiber Characterization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä